CS106B Handout #15S
Spring 2012 May 2, 2012
Practice Midterm 1 Solutions

Based on a handout by Eric Roberts

Problem 1: Tracing C++ programs and big-O (10 points)

If you think about what’s happening in the puzzle function, it should be clear that the function
computes the number of moves required to solve the Tower of Hanoi problem. Thus, the value of
puzzle (4) is 15. To understand the complexity order of the computation, it helps to draw a tree of the
computations involved, which (after abbreviating puzzle to P to save space) looks like this for
puzzle (4):

P(4)
//. - -
- o
// H"‘x
- e
o~ - K‘H._
P(3) P(3)
P(2) P(2) P(2) P(2)
P(1) P(1) P(1) P(1) P(1) P(1) P(1) P(1)
fe’lﬂ\\ .-'/ ,\\\ I.,.l"\\ ;.-'n\\\ !/ f\\\ ;.,.""\\ /"A\\ ,.-f ,\\\
A /'a \ J/ \ / N f" \'\ f \ l_lx'a Y /'a \\

\
\ \
Y \ / \ ! % ! \ / \ / !

P(0) P(0) P(0) P(0) P(b) P(0) P(0) P(0) P(b) P(0) P(b) P(0) P(0) P(0) P(0) P(O)

Y
/ Y !

Each new level doubles the amount of work, so the total amount of work must be O(2"). Another way
to obtain this same result is that the calculation of puzzle (N) requires twice as many additions as the
original Tower of Hanoi puzzle requires moves to solve the problem for N disks. If Tower of Hanoi is
exponential, this function must be as well.

Note that the efficiency is a property of the implementation and not of the underlying mathematical
function. If the implementation of puzzle were changed to

int puzzle(int n) {
if (n == 0) {
return O;
} else {
return 2 * puzzle(n - 1) + 1;
}
}

the complexity would be O(N), even though it computes the same value.

Problem 2: Vectors, grids, stacks, and queues (10 points)

/* Function: reshape
* Usage: reshape(grid, nRows, nCols);
K e e e e e e e e e e — — — — — — — — — — — — — — — ———————————————————————————————
* Changes the dimensions of the grid (in the manner of resize) in a
* way that retains the values of the original elements in the grid.
* This implementation puts all the old values into a Queue and then
* fills the new grid with values from the queue.
*/
void reshape (Grid<int>& grid, int nRows, int nCols) {
Queue<int> wvalues;
foreach (int value in grid) {
values.enqueue (value) ;

}
grid.resize (nRows, nCols);

for (int row = 0; row < nRows; row++) {
for (int col = 0; col < nCols; col++) {
if ('values.isEmpty()) {
grid[row] [col] = values.dequeue() ;

}

Problem 3: Lexicons, maps, and iterators (15 points)

/*
Function: readSynonymTable
Usage: readSynonymTable (infile, table);

Reads a synonym table from the input stream infile into the map
stored in table. The keys in the map are the words in the data
file. The corresponding value is a lexicon containing all of
the synonyms that appear on the same line.

* % F * H O *

*/

void readSynonymTable (ifstream & infile, Map<string,Lexicon> & table) ({
TokenScanner scanner;
scanner.ignoreWhitespace();
while (true) {
string line;
getline (infile, line);
if (infile.fail()) break;
scanner.setInput (line);
Vector<string> words;
while (scanner.hasMoreTokens()) {
words.add (scanner.nextToken ()) ;
}
for (int i = 0; i < words.size(); i++) {
string key = words[i];
Lexicon lexicon;
for (int j = 0; j < words.size(); j++) {
if (i !'= j) lexicon.add(words[j]);
}
table[key] = lexicon;

Problem 4: Recursive functions (10 points)

/*
* Function: removeDoubledLetters
* Usage: string shorter = removeDoubledLetters (str);

*

* Removes all but the first of a sequence of identical letters from str.

*/

string removeDoubledLetters (string str) ({
if (str.length() <= 1) {
return str;

} else if (str[0] == str[l]) {
return removeDoubledLetters (str.substr(l));
} else {

return str[0] + removeDoubledLetters(str.substr(l));

}

Problem 5: Recursive procedures (15 points)

/*

* Function: tryAllOperators

* Usage: tryAllOperators (exp, target);

* tryAllOperators (prefix, rest, target);

*

* Recursively replaces every ? in the expression by each of the
* primary arithmetic operators (+, -, *, /). If the resulting
* expression evaluates to the target integer, the function

* prints out the expression string that generated it. The first
* version of the function is a simple wrapper for the second,

* which divides up the string one character at a time, keeping
*

track of the previously considered characters in prefix.

*/

void tryAllOperators (string exp, int target) {
tryAllOperators("", exp, target);
}

void tryAllOperators(string prefix, string rest, int target) {
if (rest == "") {
if (evaluateExpression(prefix) == target) ({
cout << prefix << endl;
}
} else if (rest[0] == '?') {
rest = rest.substr(l);
tryAllOperators (prefix
tryAllOperators (prefix
tryAllOperators (prefix
tryAllOperators (prefix
} else {
tryAllOperators (prefix + rest[0], rest.substr(l), target);

+ "+", rest, target);
+ "-", rest, target);
+ "*" rest, target);
+ "/", rest, target);

}

